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Abstract

This annual interim report is organized in three parts:

Part I

The fundamental efficiency of adaptive algorithms is analyzed. It is found

that noise in the adaptive weights increases with convergence speed. This

causes loss in mean-square-error performance. Efficiency is considered from

the point of view of misadjustment versus speed of convergence. A new version

of the LMS algorithm based on Newton's method is analyzed and shown to make

as efficient use of real-time input data as can be. The performance of this algo-

rithm is not affected by eigenvalue disparity. Practical algorithms can be dev-

ised that closely approximate Newton's method. In certain cases, the steepest

descent version of LMS performs as well as Newton's method.

Part II

This part analyzes the efficiency of adaptive algorithms with nonstationary

input environments, i.e signals, jammers, and background noises can be of a

transient and nonstationary nature. Such environments have been modeled in

terms of moving paraboloidal mean-square-error performance functions. The

bottom of the performance bowl can be assumed to move slowly, with a ran-

domly correlated Markov character. Exponential time weighting, inherent in the

LMS algorithm, can give optimal performance with the proper choice of the

parameter A when the motion of the bottom of the bowl is first order Markov.

With higher-order Markov activity, exponential time weighting is no longer

optimal. Higher order adaptive algorithms are being devised for nonstationary

input applications.

,I
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This part introduces a new adaptive filtering method for broadband adap-

tive beanforming. It uses both poles and zeros in the adaptive signal filtering

paths from the antenna elements to the final array output.

When directly adapting feedback coefficients, difficulties arise as the mean

square error is not a quadratic function of the weights but is, in fact, multimo-

dal. There are questions of process instability, hang up on local rather than glo-

bal optima, and generally slow convergence that occurs with all of the known

algorithms that have been proposed for adapting feedback filters.

Our methodology effectively permits simultaneous adaptation of feedfor-

ward and feedback filter coefficients by adapting feedforward filters only. The

advantage of this approach comes from the quadratic nature of the mean square

error function. Our method does not have problems of instability and conver-

gence to local optima, and it converges essentially as fast as the conventional

zeros-only system. It has the disadvantage of not minimizing the true mean-

square-error, but does minimize the mean square of a filtered version of the

true error. The effects of not minimizing true mean square error are being

analyzed.

Preliminary experimental results comparing systems with equal numbers of

variable weights, show deeper and sharper jammer nulling than would be possi-

ble with the conventional approach.

4.
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1. 1 DITRWNf UCTION

The first part of this report deals with the efficiency of adaptive algorithms,

and suggests a way to improve on the current techniques. We include a general

discussion of the issues involved in evaluating and comparing various adaptive

algorithms. Also, an optimal form of adaptive algorithm is introduced, called

the LMS/Newton algorithm. This is a stochastic gradient descent algorithm

based on Newton's Method, with a statistical performance which is as efficient in

its data usage as possible. Eigenvalue spread does not affect the rate of conver-

gence or LMS/Newton. The standard LMS algorithm and LMS/Newton algorithm

are compared, and conditions are established when the two algorithms have the

same average performance.
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1.2 ALGORITHM EFFICIENCY

Two forms of the [MS adaptive algorithm will be discussed here, the "usual"

algorithm based on the method of steepest descent [1-5], and an idealized algo-

rithm based on Newton's method, These algorithms will be considered from the

points of view of: (a) rate of convergence, (b) efficiency of statistical perfor-

mance.

Speeding up a given adaptive process generally requires that the adaptive

parameters (weights, etc.) take values based on averaging over less input data.

The result is increased parameter noise and reduced average system perfor-

mance. When using a specific algorithm, there is generally a tradeoff between

speed of convergence and average statistical performance.

Two algorithms may be compared with each other when applied to the same

adaptation task by adjusting their rates of convergence to cause the same

effective parameter noise. As such, the more efficient algorithm converges fas-

ter. Effective parameter noise is that attribute of the noise that causes loss in

system performance.

The steepest descent version of the LMS algorithm is

Wj- = W.+ + 2AtjX (1.1)

The pth mode of the mean square error learning curve has a time constant given

by

= (1.2)

It is seen that increasing the convergence factor j speeds up the adaptive pro-

cess by causing the adaptive time constants to be reduced. However. to insure

stability in the mean, j must be kept within the bounds

>>(1.3)
• x.

V-
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where Xmz is the largest eigenvalue of the input correlation matrix R. After

adaptive transients die out, noise in the weights causes, on the average, an

increase in mean square error over the theoretical minimum mean square

error. The misadjustment M has been defined [1-5] as the dimensionless ratio of

the average excess mean square error to the minimum mean square error. For

the steepest descent LMS algorithm,

M =j" truceR= (1.4)

Increasing Au speeds up the adaptive process but increases the misadjustment.

A "Newton's method" version of the LMS algorithm premultiplies the instan-

taneous gradient estimate 2tj3 X by the inverse of R. The algorithm is

Wj., = Wj + X -X is)

The scaling constant )., (the average of the eigenvalues) has been included for

convenience. It can be shown that premultiplication by R - 1 causes each adap-

tive step to be taken not along the maximum gradient but instead in the direc-

tion toward the bottom of a quadratic bowl. The effect is very much like applica-

tion of steepest descent when all eigenvalues are equal. The eccentricity of the

performance function is eliminated by Newton's method as specified by (1.5).

Newton's method requires R-1 which is generally not available. An attempt to

perform an algorithm like equation (1.5), only using an R ' 1 estimated from input

data, has been reported by Griffiths and Mantey [6] and is summarized in sec-

tion 2.2 of this report.

For now, we shall focus our attention on equation (1.5), realizing that such

an algorithm, a true Newton's method version of LMS, is a mathematical idealiza-

tion. It can be shown to have the following properties. Instead of there being a

number of time constants of the mean square error learning curve equal to the

number of weights (as with conventional LMS), there is a single time constant

-.. 4
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given by

1/G, (1.8)

The misadjustment of algorithm (1:5) is given by

M = L.t trace = - - (1.7)

The bounds on A for convergence in the mean are

> o (1.8)

Comparing the two algorithms, we make their ju values equal in order to

have equal misadjustments. Immediately we see that the stable range of A for

steepest descent is smaller than for Newton's method when there is eigenvalue

disparity. Since these algorithms are generally operated with small jL to main-

tain small M, this is not necessarily disadvantageous for steepest descent. How-

ever. when the eigenvalue spread is extreme, steepest descent may be forced to

operate with a very small value of p in order to maintain stability. Under such

circumstances, steepest descent would be stability bound rather than misad-

justment bound.

With equal settings of As, both algorithms have the same misadjustment.

Under these circumstances, it is interesting to compare the Newton's-method

time constant (1,6) with the steepest-descent time constants (1.2). It is clear

that some of the steepest descent convergence modes are going to be faster

while some are going to be slower than the single Newton's method mode. If we

compare areas under the learning curves in order to compare "learning times"

of single mode exponential curves with multimode curves (as is done in Fg. 1. 1),

it can be shown that when misadjustment bound, the learning time of steepest

descent averaged over random initial conditions is identical to the learning time

A

- - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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of Newton's method. However, one should realize that the worst case learning

time for steepest descent will be worse than that for Newton's method by a fac-

tor of X maX/.,.

The behavior of the steepest descent LMS algorithm has been analyzed in

detail in [4] with a simple form of nonstationary input that results in the qua-

dratic mean square error function undergoing a random vector displacement.

The motion of the bottom of the bowl is first order Markov. Misadjustment

results both from noise in the weights and from the weights dynamically lagging

behind the bottom of the moving mean square error bowl. It is shown that the

total misadjustment is minimized when the rate of adaptation is adjusted (by

choice of 1A) so that both components of misadjustment are equal. A similar

analysis has been made for LMS Newton, and it has been found that the value of

1L that optimizes steepest descent also optimizes Newton's method and that both

algorithms yield the same misadjustment for the same As. The conclusion is that

if the steepest descent algorithm is misadjustment bound rather than stability

bound, the conventional steepest descent approach gives identical performance

in a statistical sense to Newton's method with simple nonstationary inputs.

The Newton's method version of t he LMS algorithm is about as effecient as

an algorithm can be, from the standpoint of statistical performance. For a given

number of weights and for a given level of misadjustment, the number of data

samples seen and consumed in the convergence process of LMS Newton is abouk

as small as nature will permit. Justification for this comes from study of adap-

tive behavior when learning with a finite number of data samples.

It is shown in Appendix A of reference [4] that when training an n-weight

adaptive system with N independent data vectors, the expected misadjustment

is

M- number of weights
N number of training samples

g"V. -7 -.
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This result was first reported without a complete proof in [1]. It is independent

of algorithm, as long as the algorithm is least squares. A few simplifying

assumptions were made to arrive at such an elegant and simple result. This for-

mula has been tested extensively by computer simulation and has been found to

be quite accurate for misadjustments of 5% or less.

Misadjustment formula (1.9) may be compared with that for LMS Newton
k

(1.7). The comparison cannot be exact however, because (1.9) applies to learn-

ing with a finite block of data while (1.7) applies to a steady flow learning pro-

cess. Actually, (1.9) applies to steady flow learning with a uniform moving-

average window while (1.7) applies to steady flow learning with an exponential

moving window. Reconsider equation (1.7). It can be written as

M#= -a- (1.10)
4;?.

One can read this as "nisadjustment of LMS Newton equals the number of

weights divided by the number of training samples." if one considers that an

exponential process essentially settles within four time constants and that any

input that has occured more than four time constants ago would have negligible

effect on the weights. We conclude that LMS Newton has the mis strent of a

fundamental least squares process. No adaptive process could have a lower

rnisadjustment than (1.9) or (1.10). No more "information" (in the common

English sense) can be squeezed from a given amount of data.

We now know that the Newton's method version of LMS is as fine and

efficient an adaptive algorithm as can be. Unfortunately it cannot be imple-

mented unless one perfectly knows R - 1. Without such knowledge. one can only

approximate LMS Newton. In application to adaptive FIR digital filters, perhaps

this or something approximating this is achieved by the adaptive lattice filter

algorithms that have appeared during the last half dozen years or so. Whether

_1_ __-, ... ~ ,. ..
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or not this is true remains to be seen.

With extreme eigenvalue disparity, stability may be of limiting concern

rather than misadjustment. To achieve maximum convergence speed with LMS

steepest descent. ju would be set to 1/ Xm ., causing the slowest mode to have a

time constant of X.,/ 4X1ld adaptations. Operating steepest descent at full

speed, the misadjustment would be M = traceR/ Xnm > 1. LMS Newton, doing

the same job, could be pushed much faster. Maximum speed would be achieved

by setting A to half of its upper stable limit, i.e. /h = 1/ 2N., giving theoretical

(no gradient noise) convergence in one iteration. As such, its misadjustment

would be M = n/2. A 100 weight filter, for example, would have a misadjustment

of 50.

In most engineering applications, a misadjustment of 100% would be con-

sidered very high. The adaptive solution then gives twice as much mean square

error as the Wiener solution, i.e. 3 dB more mean square error. Only when the

minimum mean square error of the Wiener solution is zero or very small would

high misadjustment be acceptable. Recall that misadjustment is normalized

relative to minimum mean square error.

In most engineering applicationp, a misadjustment of about 10% would be

satisfactory. As such neither LMS/steepest descent nor LMS/Newton would be

pushed anywhere near to the brink of instability. Speed of convergence would

then be misadjustment limited rather than stability limited, regardless of eigen-

value spread.

It is safe to say that the steepest descent version of the LMS algorithm is

the simplest, most widely used, and most widely understood of all adaptive algo-

rithms. With all eigenvalues equal, its performance is identical to that of LMS

Newton. With eigenvalue disparity, its average speed of convergence and statist-

ical efficiency and performance with nonstationary inputs is identical to that of

",X 7:35Z ,

..___ ._ ....__
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LMS Newton, except that its worst case convergence rate is poorer.

When dealing with an input signal buried in noise, the eigenvalue spread is

slight and one can be assured that LiS steepest descent will perform as well or

better than any other algorithm. When the input Is stationary, noise free or only

slightly noisy, and when the Input signal is narrow-band with a highly peaked

spectrum, eigenvalue disparity could be large or extreme. Under these cir-

cumstances, opportunities will exist to better the worst-case performance of the

steepest descent form of the IMS algorithm.

' Ii___ _ _
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2.1 INTRODUCTION
The preceding discussion points out that comparisons between adaptive

algorithms can be made on the basis of misadjustment and speed of conver-

gence. Often the janmers to be nulled are of a time-varying nature. In this

case, the concepts of misadjustment and speed of convergence have appropriate

counterparts. For the time varying case, one can view the algorithm as being

repeatedly restarted with only a few input data samples available to estimate

the weight values required to null the changing jammer. As such, the speed of

convergence of an algorithm relates to how well the algorithm 'tracks' or follows

a change. If a jammer changes position or changes spectral character, then the

optimal weights required to maintain the best possible jammer null must also

change. Tracking error refers to the difference between the average value of

the adapting weights and the optimal weights at each time instant. In a nonsta-

tionary environment, poor tracking implies that the ensemble mean of the

adapting weight vector is far from the optimal weight vector which would pro-

duce the best possible null. Weight misadjustment is related to the noise in the

adapting weights. If an adaptive algorithm is tuned to track a time-varying jam-

mer, it will exhibit some amount of weight noise. In fact, tracking ability and

weight noise are directly related. The better the tracking performance, the

higher the weight noise. Ideally, one would like an algorithm which is capable of

tracking a quickly varying jammer, yet show little weight noise. Part 2 of this

report develops several algorithms which show improvements of this kind over

conventional LMS.

This section begins with a discussion of the recursive least squares algo-

rithm for adaptive antennas. The algorithm will be developed in an exact least

squares sense, then a stochastic interpretation or the functionihg of the algo-

rithm will be given. The tradeoffs between misadjustment and tracking will be

T'ri

. .. ..- -. ,,. .. *'4 .. ..

L-
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shown by actual simulations. A new algorithm will then be introduced as a

method to improve the misadjustment/tracking tradeoff. Derivations of optimal

strategies for use of data will then be made, and the circumstances under which

the recursive least squares algorithm is optimal will be discussed. Comparisons

between the new algorithm and current techniques will then be presented. The

goal is to obtain optimal adaptive array performance with nonstationary inputs

consisting of signal, noise, and jammers.

Li
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2.2 DERIVAMION OF1L

The weighted recursive least squares algorithm (WRLS) analyzed here has

been previously described by others [6]. This discussion is included in order to

establish terminology and to introduce recursive algorithms that can be applied

to adaptive antenna arrays.

Consider the Zahm beamformer of Fig 2.1. This antenna array is adapted so

that the filtered output of the auxiliary elements y (t) matches as closely as pos-

sible the output of the primary element d(t). This results in an antenna array

sensitivity pattern which is as omnidirectional as possible while maintaining

nulls on the stronger incident signals. For the array of Fig. 2. 1, the filtered out-

put from each auxiliary element is

W,(st) = w. (s)xt(t-j) (2.1)
1=0

The weights are now assumed to be a function of the parameter s which will soon

be used to determine an optimality criteriorL Define the vectors,

W(t) = ['W.(t) .- ,.(t))T  (2.2)

4(t) = [L,(t)z(t-), . ,r (t-n)]' (2.3)

In vector notation, Eq. 2.1 becomes

I,t) = W(s)X(t) . (2.4)

The summed output of the auxiliary elements is

Y(,.t) % ,(S.t
,.,

= w T(S)X,(t). (2.5)

To simplify notation later, introduce the combined vectors,

IT
Ii1 i .... .. .. . .. _ _ _ _ _ _ _

L|



; r.

17

r

Tapped Delay Line,+
n delaysC(t)

x M(t) Output

Au

Figre2.. ah aaptvebemfrwer

x 2

_ _ _ 2(t)_ _ _ _ ....



18

Ji T(t) = [Wrt).. W.It)] (2.6)

XT(t) = [(t) .4(t)] . (2.7)

so we get

Y(s.t) = xr(s)X(t) . (2.8)

The instantaneous error is given by.

g(s.f) = d(t) - Y(s.t) . (2.9a)

The error criterion to be used for adapting the weights is a weighted sum of

squared errors.

C (t) = ato(t)v(t,,) 12,

- a(t)(dt(j) - Y(t~i)12 (2.9b)

The ai(t) are weighting coefficients which are usually chosen to weight errors in

the recent past more heavily than errors in. the distant past. The derivative 'of

i'(t) with respect to JM(t) is

= 2a,(tj(d(i) -.XT(t)X(t)aTi W (2.10)

To minimize t*(t). this derivative is set to zero, giving

0 = _____

= 2at(t)(d(i) -Jfr(t)X(i)).XT (i) (2.11)

or

a cz(t)XC(i)X T (i).FL(t) - at(t)d(i)X(i) .(2.12)

which reduces to
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The optimal choice of .f(t) is given by Eq. (2.13), this value will minimize the

weighted error r'(t) of Eq. (2.9).

The basic problem associated with finding H(t) is that for each time step.

an (n+l)m by (n+l)m matrix must be inverted. For notational convenience,

define the matrix

P(t) = [ ai(t)X(i)XT(i) (2.14)

To find .F(t + 1), the matrix P(t + 1) must be found. Since

P(t+I) = (tI+)X(i)XT(i)

= c1 (t+1)X(i)XT(i) + at+i(t+l)X(t+)Xr(t+l) (2.15)

Making certain assumptions about the form of the weighting ai(t) results in a

simple recursion irn'which P(t+1) can be found from P(t) in order (m(n+ 1))2

operations. Specifically, choosing

a (t) = a t - i,1 2. t (2.16)

results in the widely used exponential weighting scheme, where the most recent

error sum (2.9b), makes the greatest contribution to the running mean square

error, and it has the greatest effect on the current value of 1(t). Also, errors in

the distant past make a relatively small contribution to e'(t), and therefore have

a reduced effect in the determination of 11(t). Figure 2.2 shows how the weight-

ig given by (2.16) can. be interpreted as a sliding exponential window on the

mean square error. Assuming an exponential form for ai(t) gives,

= 4I-t i=1,2... t
{j (t +et 1=)2...
= 1 i =t+ e~v

01at 12 (2.17)

1 --+1
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so Eq. (215) reduces to

P(t+1) = [a t a,(t)X(i)Xr(i) +X.(t+ )Xr(t+1)

= (a P-'(t) +.X(t+1)XT(t +1)) (2.18)

The particular choice for a value of a will be made later. For now, assume that a

is known. Equation 2.18 can be simplified using the matrix inversion lemma

(Appendix A) to

-- p P(t)X(t + I)Xr(t +I)Ptl

P(+1) = LP(t) - t (2.19)

Equation (2.19) gives a recursive update for P(t) which is far simpler than per-

forming a direct matrix inversion at each step. Also, due to the form of aj(t)

the update for W(t ) becomes

.k(I+ ) = P(t .. '[a, a,(t)d(ik)X(i)+d(t+1).X(t+1)] (2.20)

This expression can be combined with Eq. (2.19) to yield a recursive update for

w(t):

(t) P(t)YX(t +1) [d(t +1) - R(t)X( +))

+

Appendix B contains all intermediate steps for deriving Eq. (2.21) from Eq.

(2.20). Equations (2.19) and (2.21) are the update recursions for the WRLS algo-

rithm

_ _ _ A.. .. ... ....
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2.3 MISA.J USTMENT AND TrI KING O, WRLS

The WRLS algorithm given by Eqs. (2.19) and (2.21) was implemented on a

two-element Zahm bealnformer shown in Fig. 2.3. The two element array had

one incident time varying janmer. which generated a wavefront according to

J(t) = ac(t)e(t) + al(t)xt-l) , (2.22)

where (t) is a white-noise sequence. Note that if ac(t) and al(t) are constants.

the jammer is stationary. Allowing a time varying ao(t) and al(t) makes the

spectral character of the jammer change over time. The array spacing s and

the jammer angle of incidence 9 were chosen so that a time delay of one sam-

pling period existed between the signals received by the primary and auxiliary

elements. In the notation of Fig. 2.3. this is

x(f) = d(t-1) (2.23)

Specializin g the situation to that described by (2.23) allows an easy calculation

of how the algorithm would optimally behave. This optimal behavior can be

found as follows. The array output is given by

t(t) = d - w(t)z (t)
=d(t)-wt()d(t-1) (2.24)

The input is known to be generated by a process given by (2.22). An expression

for 'w(t) in terms of a.(t) and al(t) can be found which represents the optimal

choice of w(t) to minimize E(r(t)) for every t. since

= E[(d-(f) - w( )d(t - Z

E ,W(tn) _W(,,W(t -

SE(.(t-n) t-n) + -,',,--i)

-W(f)(a,. (t --n-1)e(t -n-1) +1 czl(f L 1ef--)

2 ::.

L -n
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Taking derivatives and equating to zero gives the optimal W(t), denoted by

U' as

0 -2[cL1(t -- n)a, (1-n-i)) +2u*(t)[a. (t -n-i) +U2~(t -n-i)) (2.26)- *

or

a (t -,)a., (t - n -1) ( .7
w -(t) -1(t---) + af (t-n-1) (2.2?)

This formula for the optimal weight value requires complete statistical

knowledge about the jamming signal and is used only as a benchmark by which

to compare practical adaptive antenna algorithms such as WRLS. The WRLS

algorithm (2.19,2.21) was used to estimate -w(t) and plots are shown comparing

w (t) to w *(t) (Fig. 2.4).

The plots in Fig. 2.4 ilustrate the tradeoff between weight tracking speed

and weight estimate variance. Figure 2.4a is a plot of w(t), the optimal weight

trajectory. Figures 2.4bcd are plots of the adapting w(t) for progressively

larger values of a. the decay rate factor. A graph of at - ( is shown with each plot

to give some visual idea of the relative error weightings. Note that decreasing a

(placing more importance on new data) leads to better average tracking of the

true parameter, but the adapting weight variance (misadjustment) is quite

large. Conversely, increasing a (corresponding to a decrease in the importance

placed on new data) the algorithm lags behind and tracks the optimal weight

poorly, but the adapting weight value has a low variance. The adapting weight of

Fig. 2.4b is considered to have high miadjustment, while the adaptive weight of I
Fig. 2.4d has poor tracking qualities. In typical applications of this algorithm, a

choice of a is based on the tradeoff between these two properties. Such a choice

is shown in Fig. 2.4c, where both low misadjustment and good tracking proper-

ties are obtained. In the sections to follow, we develop a new class of algorithms

S...
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which perform more efficiently in the misadjustment-versus-tracking sense

described above.

-I
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P-4 S"OCIIASFIC INTERPMICTATiON O7 WRLS

Note that the above derivation of the iterative recursions relied on a deter-

ministic weighted least squares error criterion. Equations (2.19) and (2.21) rind

a set of weights W.(t) which are optimal for minimizing '(t). based on the data

sequence observed. From a stochastic point of view, this algorithm can be

viewed as an approximate realization of the ideal LMS/Newton algorithm. A sto-

chastic interpretation can be given for many of the quantities used in finding the

weight updates (2.19.2.21). The weighted mean squared error criterion can be

used as a performance measure, given by

E[r'¢()] E ft)(d(t) - Y(t.i))2. (2.28)

Proceeding in exactly the same way as before, we minimize this expected mean

squared error criterion by taking a derivative,

OE(v'(t)) E ai=t _ _W.  l

= EI 2a(t)(di) -J.T(t)X(i))XT(i)J (2.29)

Setting this derivative to zero gives,

Ef11  ~ ~ ~ ~ ~ ~ ( ).~tXiXT)~~f d E[2 ~li).X(i)I (2.30)

so,

Sot = a ctd)X(i)XT(i)] ' JE at)d(i)X(i)1

= (t)] E t C(t)X(0XrC )
tal

If the X(t) sequence is stationary, the term contained in the inverse brackets of

_________________
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(2.31) converges to an estimate of the autocbrrelation matrix R.,

at a(t1J E t a.,(t).X(i).X7(t) = [ a%(t)} 'tca(t)E[X(i)XT (i)I

= R=A4 It ) 00 , a()

= = (2.32)

Similarly the last term in (2.31) converges to an estimate of the cross-

correlation matrix Pzd,

L a1cx(t)J E~ cx(t)d(i)X(i)= aI L) a%(t)E(d(i)X(i)]

= Pad f act(t)) at(t)

= Pad (2.33)

Hence, in the stochastic sense the weight vector is given by

.E~t R(),(t) (2.34)

where R -'(t) and Pg(t) converge in the mean to the true R. and Pd values if

the input signals are stationary. This is consistent with Wiener filter theory.

In the case that the input signals are not stationary but are time-varying,

the quantities R 1(t) and Pj(t) are sample mean estimates of the true time-

varying covariance matrix and cross-covariance vector. This is an important

point to be remembered for the discussion that follows. In situations uLhere the

iTput signals are non-stationary, the true cova-iance quantities R, and Pd

ill be functions of time denoted by R,= (t) and Pd (t).

Now, components of the iterative relations (2.19) and (2.21) can be com-

pared with those of the LMS/Newton algorithm. Normalizing (2.35) gives the fol-

lowing recursive relations:

* I -
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.N(t +1) = 1(t) + 1 P(t)X(t+1)(d(t+1) - jiT (t)X(t +1))a + XF(t +1)P(t )X(t + 1)

= X(t) + Ka+TtIK~)~+)KP(t)X(t+l)(d(t+l)
Ka~ + XT(t + l)KP(t)x(t + KPtXt )d) i

-
T (t)X(t +1)) (2.35)

where the normalized constant K is chosen to be

K = a (t) (2.36)
t=1

For the case of exponential a(t) this reduces to

K = at-i

_ -a (2.37)

This choice of K gives

K P(t) = R)=(t) (2.38)

Hence the algorithm (2.19) and (2.21) constitute a form of LMS/Newton algo-

rithn, with an adaptation coefficient which is time variable;

(t) = I
A a + Xrt (tR 1.(tX+1)

_ z (2.39),
a(1 a) + A,4(t + 1)RLI(t )X(t + 1)

1-a

So this gives the W(t) adaptive update algorithm as

.. (t+1) = W(t) +tA(t)R-(t)X(t+l)(d(t4+) -wZ(t)X(t+1)), (2.40)

which is quite similar to the IMS/Newton form given in Part I. An interpretation

for the action of the j(t) can be found by looking at the XJf(t + 1)k-l (t )X(t + i)

term. If .X(t) is assumed to be a zero mean gaussian process, then the probabil-

ity of a givenJ.(t) occurring is

I I - . . . .. . . I -
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P[X(t) z] = e (2.41)

(2iT)f/2( det R,,4 5 z

Where R. is the covariance matrix of the multivariate density. Since R. is a

positive definite matrix, excursions of X(t) from the mean are decreasingly

probable. Also, since X7R.,'X increases for less probable X(t), jzt) is

decreased. Hence ja(t) can be thought of as automatically scaling the step size

by the relative probability associated with a particular value of X(t).

As is clear from the previous development, the WRLS and LMS/Newton algo-

rithms both perform an exponential weighting of incoming data. Single mode

exponential weighting is refered to here as a first order process. This terminol-

ogy comes from the form of the recursion used to generate exponential weight-

ing. For this reason WRLS and LMS/Newton are called first order adaptive algo-

rithms. In the next section we explore the possibilities of higher order data

weighting schemes and the resulting higher order adaptive algorithms.

I

... . . _ _ _ _ _ _ _ _ _--__ _____ _ _ _. . .: . .~
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Z5 ALThNATIVES TO EXPONENTIAL DATA WEIGHTING

This section develops the intuitive justification for why nonexponential win-

dowing coefficients, at(t), are desirable. A particular choice of the ca(t) can be

made by defining a suitable performance measure and by assuming some

knowledge of the nonstationary character of input signals, jamming interfer-

ences, and noise.

An exponential form for the windowing coefficients was assumed in section

2.2 in the development of the WRLS algorithm. The exponential form leads to a

simple, recursive way of estimating P(t), the inverse sample covariance matrix.

The unnormalized expression for P-1(t) is

P-'(t-1) = ,.(t+l)

= at -X(i)X T (i) (2.42)
t=1

This expression can be cast into a first-order recursive difference equation form

as

f(t +1) = ctR(t) +X(t)Xr(t) (2.43)

A more general class of estimators for }R,(t) can be obtained by allowing

higher order autoregressive moving average (ARMA) difference equations of the

form,

R,(t+l) = a.R.(t) + " + anR,.(t-n) + boX(t)X T (t)

+ + •• bmX(t -n)Xv(t -m) (2.44)

This ARMA representation of the estimator has time invariant coefficients and

can therefore be viewed as a linear, time invariant filter acting on X(t)Xr(t), to

produce R (t). The z-transform of the process given by (2.44) is

A(z)R=(z) = B(z)X(z)XT(z) (2.45)

L i. ... |
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where A(z) and B(z) are polynomials of the form

A(z) = 1 - azz - 1 - a 2 z - 2 - az-n (2.46)

a

B(z) = b. + bz - 1 + b 2z - 2 + + b.", (2.47)

and z 1 represents a unit delay. Equation (2.45) can be rewritten as

( = A(2) (z)}(z) (2.48)

The polynomial ratio B(z)IA(z) represeiits the z-transform of a filter with input

X(z )X r and output kR=(z). Figure 2.5 illustrates the idea. The B(z) polynomial

possesses m roots. These roots are commonly referred to as 'zeroes' of the

filter. Similarly the A(z) polynomial has n roots called the 'poles' of the filter.

These names, come from the effect a root of the polynomial has on the filter

transfer function,
H(z) = B(z) (2.49)

A(z)

A root of B(z) will cause a zero in H(z), a root in A(z) will cause an infinite

value (or pole) in the value of H(z). This z-transform notation has been intro-

duced so that the frequency response of a filter may be easily understood. The

free variable z is a complex number, whith when given the value,

Z = eWT (2.50)

and substituted into (2.49) gives a complex number for H(z). The magnitude of

this number represents the magnitude of the response of the filter to a

sinusoidal input at frequency f = Figure 2.6 shows this idea.

A frequency domain interpretation of (2.48) lends valuable insight into the

significance of allowing a higher order estimator. The z-transform of the first

order estimator of Eq. (2.43) is

.

_ _ _
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(t))

Linear Filter, Transfer Function I(z)

Figure 2.5. Representation of the general estimator as a linear filter.

Unit Power Input

Sinusoid of Frequency -

Envelope Detect

I1x(t)l ; WHe

Transfer Function H(z)

Figure 2.6. Evaluation of frequency response of a linear filter.
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(o-az')R(z) = X(z)X(z) (2.51)

or

R.z = [ X)XT(Z) .(2.52)

This is the same transform that was performed to arrive at (2.48). This is shown

in Fig. 2.7. The form pf (2.52) tells us that the exponential window acts as a sin-

gle pole filter. This single pole estimator is a low-pass filter with cutoff a. Intui-

tively, this means the estimator passes low frequency (slowly varying) com-

ponents of the X(t)Xr(t) sequence, while rejecting high frequency (quickly vary-

ing) components of X(t)Xr(t). A plot of the response of the filter described by

(2.52) as a function of frequency is shown in Fi ,. 2.8. Note that the general esti-

mator of Eq. (2.48) allows many poles and zeroes. Because of this, proper choice

of the a, and bi coefficients in (2.4) and (2.47) will place dips and peaks in the

frequency response of the filter. In the case of the single pole estimator, the

only choice to be made was u ere the frequancy response starts to drop. The

more general formulation with its increased degrees of freedom allows a fairly

arbitrary frequency response.

The usefulness of the more general formulation can be pointed out with a

simple example. Recall that in situations where the jammers are nonstationary,

the covariance matrix will be dependent on time. Suppose it is known that

R (t) as a function of time, has a certain spectrum. A component of the R. (t)

matrix will typically have a spectrum as shown in Fig. 2.9a. A finite time average

of the same component of X(t)Xr(t) will usually have a spectrum like Fig. 2.9b.

Generally, simple averaging or exponential averaging (as in section 2.2) of

X(t)XT (t) will not give a spectrum which matches the true R,.(t) spectrum.

This discrepancy arises because for non-stationary situations, the time averages

used to estimate R (t) are not the same as the ensemble averages which

€a
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Figure 2.7. Z-transform representation of first order estimator.

S.7

a.0

_'0 log IH(z)I

dB

f

Figure 2.8. Frequency response of first order estimator.
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Region

10~ Log Rx(tI

f

T

Figure 2. 9. Spectro of true R xx(t) component and corresponding

component of averaged X(t)X (t) sequence.
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constitute the true R,(t) . Clearly, something better than a simple average

must be used. Intuitively, the estimator acting on the data of Fig. 2.9b should

attempt to notch out those components with small magnitude in Fig. 2.9a. A

general filter such as the one in fig. 2.5 could do this easily, while the single pole

filter of Fig. 2.7 would be a compromise at best. Figure 2.10 shows this pictori-

- ally. This is very similar to the matched filter concepts used in signal detection

theory.

For this preliminary investigation, an all-zero filter approximation to the

pole-zero form of (2.48) will be made. As shown above, the first-order estimator

for R_,(t) had two expressions: a single pole (autoregressive) form, Eq. (2.43).

and a multiple zero (moving average) form, Eq. (2.42). Equation (2.43) is called

a parsimonious representatiion of the estimator, since it requires only one

parameter (a) to describe it. Since practical considerations require a fixed

memory size, Eq. (2.42) cannot be implemented directly. A good approximation

can be made by choosing a sufficiently large m so that am = 0, which gives

Rj'(t) = a t -iX(i)XT (t)

a, -4 aX()Xr(i) (2.53)
1=1 --m

A development for the general autoregressive model demonstrates that if

R.(t) = aoR.(t) + ... + aiRR(t--n) +X(t)X7(t) , (2.54)

it can also be estimated by a moving average process,

R,()= a(t)X(i)XT (i) (2.55)

The representation is perfectly accurate if L = t -i, and is usually quite good if I

is taken to be large but fixed. A proof of this result can be found in [10]. The

result of these steps is that the estimator for R (t) (2.44) can be represented

Ir

*1 _ .~ . .
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(a)

f

f (b)

Figure 2.10. (a) Desired spectral character of X(t)XT Mt filter.
(b) Single pole approximation--chosen by user for best

tracking/misadjustient combination.
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by the simple moving average process

R .(t) = a,(t)X(i)Xr(i) (2.56)

The cost of formulating the problem this way is one of a large memory require-

ment (more than is absolutely necessary); the advantage is a form for the esti-

mator which is readily calculated.

Since Eq. (2.44) had constant coefficients, the a,(t) coefficients will depend

only on the index t-i. This result can be found in [10] So define

c(t-i) = a,(t) (2.57)

which gives

Rk(t) c(t-i).XT( (2.58)

Equation (2.58) represents RZ (t) as a convolution of the sequence c (i) and

X() XT(i). In this context, the c (i) have an interpretation as the impulse

response to the linear filter of Fig. 2.5 and can 1-e drawn as in Fig. 2.11.

Up to this point, the concept of windowing has been applied only to estima-

tion of R. (t), but P&(t) must also be estimated by the same window,

= c(t-i)X(i)d(i) (2.59)

Note that because arbitrary c(i) coefficients are allowed, the efficient (order

((n+l)m)2) update will not work. Hence R.(t) must be found using equation

2.58. then inverted at each time step. A single inversion of R.(t) requires an

order of ((n+l)m)3 operations, which is not computationally acceptable. Com-

putational issues will not be considered presently, since the point of this investi-

gation is to determine if allowing arbitrary windowing coefficientsc (i) results in

an improvement of the algorithm's performance. In subsequent investigations,

the iterative inverse algorithm (11] will be used as a means of alleviating this

L
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X(t)XT(t) Convolve With t

_ti---)(t) = c(t-i)X(t)xT(t)
i=O

Impulse Response of Filter of Figure 2.5.

Figure 2.11. Realization of Filter of Figure 2.5.
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.6 AN OPTIMAL INDOW CUlITEZ1ON f
The adaptive algorithm given in section 2.2 (Eqs. 2.19, 2.21) forms estimates

R.(t) and Pd(t). Using these estimates the algorithm finds a weight vector

.Ii(t) which will place a null on the jammers present. Section 2.4 discussed the

K fact that when the jammers are time varying, R.. and Pd become time varying

quantities as well. Therefore, the problem is reduced to estimating time varying

covariance quantities, R.(t) and P3d(t), as accurately as possible, to null the

jammer. It is desired to form this null quickly, while simultaneously maintaining

an acceptable level of weight variance. Weight variance is undesirable since it

may lead to signal cancellation [12]. Generally, the time varying jamrmer

parameters are assumed to be stochastic processes. For this development, a

certain subset of the jammer parameters (3, will be allowed to change in time,

and their values will be found as the output of a filter driven by white noise (see

Fig. 2.12). Specifically, the jammer will have time varying frequency charac-

teristics as shown in Fig. 2.13.

R=i(t) and Pd(t) will be found as weighted sums of past data, as shown in

Eqs. (2.58)and (2.59). of section 2.5. With the above formulation, the idea is to

now choose the window coefficients c(i) so that i.(t) is in some sense a best

estimate of R,(t). Mean squared error will be used as a measure of quantity of

the estimate. The problem then becomes,

Minimize E( jR[ t) - ,R,(.L. f,] (2.60)I6 (01i"

For this preliminary investigation, values of c (i) will be found which optimize the

quality in (2.60). and then used to estimate the Pd(t) vector. A totally general

approach would be to define some performance criterion which measures the

accuracy of both the R.,(t) estimate and the Pd(t) estimate. This more gen-

eral development will be pursued later this year. Since R=(t) and Rk,(t) are

4
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matrices, a matrix norm must be chosen to give (2.80) meaning. A simple norm

could be obtained by changing (2.60) to

MijuTze E[trace (R.(t) - R.(t))] (2.61)

A solution for (2.61) may be approximated by assuming the array to have only

one auxiliary element, and solving

Minimize E[ o (t) - 0(t)) 2 ] (2.62)

where So, (t) is the zeroth order time varying covariance lag,

= E(X,(t)Ii ,) (2.63)

and

= c(t-i)/f() (2.64)
tat -4

In making the above assumptions, the major simplification arises by performing

the minimization on the squared error of the zeroth order lag. The assumption

of only one auxiliary element does not decrease the generality of the result, but f
does decrease the notational complexity.

The solution to Eqs. (2.62) through (2.64) is a simple result of Wiener filter

theory. Let

Z(t) = X2(t) (2.65)

and minimize (2.62) by setting its derivative with respect to the C(i) equal to

zero. This gives

- (E(. .(t) - -. (t))9) t -1. ... , .
Oc (t -j) 

.

- a (E(io.(t) - c(t--i)Z(i))2) -j = -I.

t
= 2E(Zj)p.(t) - E c(t-i)Z(i)Z(j)) j = t-L. t (2.66)

or

L .
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~~~~~~? c(-)EZIZw) [ tZu)) t-L, t . (2.6?)
tat -4

Equation (2.67) can be more efficiently stated in matrix notation as

R.C = P., (2.68)

or

C= R.:' P&, . (2.69)

where

zr(t) = [z(t-1). z (t-+l)....z()] (2.70)

R. = E[Z(t)Zr(t)] (2.71)

P., = E[.Z(t),o0(t)] (2.72)

CT = [.2,73-)) c(-2). c(l)1 .(.73)

Equation (2.68) is a large. Toeplitz set of equations. Typical values of L are about

200. which allows for a good approximation of the AR part of the estimator (see

discussion following Eq. (2.52)). The quantities R, and P are found from the

statistics of the time varying parameters of the jammer.

Examples of solutions to (2.69) for certain assumed jammer models will now

be given.

ii
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Z7 DETERMINING AN OPTIMAL WINDOW FOR A SIMPLE NON-STATIONARY JAMMER

An optimal window will now be found for a jammer using a single zero pro-

cess to generate its wavefront. Figure 2.14 shows the antenna configuration, and

how the jammer wavefront is generated. The jammer wavefront is given by

W(t) = u,(t) + a (t')u (t'-1) (2.74)

where u(t') is a white noise sequence. Note that the same antenna configuration

outlined in section 2.3 is used here. This configuration will be used throughout

this part of the report to allow a common basis for comparison. The signal at

the auxiliary element would then be,

x(t) = u(t-n) + a 1(t-n)u(t'-n-1) . (2.75)

For simplicity, shift the time index relative to x, so that t = t'-n , giving

x(t) = u(t) + a,(t)u(t-1) . (2.76)

As outlined previously, a 1(t) is generated by a time invariant stochastic process.

This formulation of the problem can now be solved using the techniques

presented in section 2.6. First form R,,, then find P=, and solve the resulting

set of linear equations. Expressions for the R, matrix and the P,, vector will be

found for each component. These components will then be reassembled to find

the matrix and vector.

An expression for RA,, will be given as a function i j, which indicate which

row and column component (respectively) this expression represents. Both i

and j range from t -L to t since Ra, is I by I matrix. First,

R._(,.) W z )]
f(i)C7)]

,(i) + a(i)u(i-1))(u() + a,,)u(j-1))2) . (2.77)

and assume u (t) is a white noise sequence,

, . .V p . , , { ., .., i ., . . . . .

L a. |
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-Jammer Wavefront

W(t) dt

Time Varying
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E~u(i),uUj)] 0 ~y iO (2.78)

Multiplying out (2.77). distributing expectations, and substituting (2.78) gives

E[x2 j)x 2 (j)J =E[u2 (i)u2(j)] + E[uz2(i)U 2(i-1)U2(j)] +

4E[a,(i)a 1 )u i u()u(i-)u(j-1)] +

E[a ()u 2 (i-1) 2=.)] + E[a2(i)a2(j)u2 (i-1)u2 (j-1)] . (2.79)

Now assume a(t) is uncorrelated with u and has zero mean. Denote the expec-

tation operator as

E(z) = (2.80)

which gives

E(X2(i)Z2 ,j) U /i)U ki I t2i)U 2 -I)U2k~
+4 4&7(YiTIU_ riTui )ut- u(

2(j~ Ij)U2C 7 iu ~ u~)ij-) (2.81)

Further, since a (t) is a stationary sequence Lhe value of RI,(i.j) depends only

on i-il From '2.81).

IA(iI) +6- I-j I=0
u--F(i + + (J ) )) .-,I =1 (2.82)

An expression for P, will be found in a similar way. Component i of the P,,

vector will be denoted P.,(i). The components are found as.

P3 ,(a) = E(z %)PI) (2.83)

where i ranges from t to f -4. P, is the expected value of the power of x given

knowledge cf the ;.a:u of .hc stcc tx.i"r.r-.etor al(t).

P = E212(t)i-,(t)

-" , ,, ' " " ..' . - *"F
" '

' ' --' -.. .-- " -' . . . . . " . .
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=E[(u.(t) + a,(t)u(t-1))2ja,(t))

u J(t) + a(t)u(t-l)

- + af(t)} (2.64)

Now find P (i) as

P=,(i) = E[X2 (i)il(1 + a2(t))]

= E[(u (i) + a,(i)u~i-))(1 + a?(t))1 (2.85)

Making the same assumptions used in obtaining (2.81), gives

e,,,() = -- (1 +2a-+a;,()a,,(t)) (2.86)

Since it is desired to find the C vector which solves

R. C = P,, (2.87)

The matrices RI and P_ can be scaled by an arbitrary constant without

affecting the solution. Dividing by u gives

R,.(i,K) = K +1 + }+ ai(j) li-+ 1=1 (2.88)

+ 2~ja (ia )l- 1>I

and

P10() + 2ac + aT2(i)a(t) (2.89)

where K, is the kurtosis of u, given by

K = - (2.90)

Next, some model for how the a l (t) sequence is generated must be

assumed. Often the al(t) sequence will be a first-prder Markov process, which

can be approximated by driving a single pole filter with white gaussian noise,

a1 (t) = ea ,(t-1) + (l-a 2 )1"2 q(t) (2.91)

4- - - : ,. : . ..¢ . t :,  - _ . . ., . .
____
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where 9 () is the white gaussian noise sequence. The value of al(t) is a function

of its last value and the random q (t) sequence, hence the name first order Mar-

kov. Figure 2.15 illustrates the generation of a 1(t) in the z-transform notation

of equation (2.45). The autocovariance of al(t) is given by

E[(a (i),,,&))] = a 1k (2.92)

where k = i-j. A derivation of this result is presented in [14]. Note also that

since 9 (t) is a gaussian sequence, the output of the linear filter a(t) will also be

gaussian (this result can be found in [13]). Because a,(t) is gaussian, its fourth

order moments can be broken down as,

E[(a 2 (i)a 2 (j))] = E[(a2 (i))E(a2 (j))] + 2[E[(a,(i)cx,(j))] 2  (2.93)

Substituting (2.92) gives

E[a2(i)a(j)] = 1 + 2a 2 Ik1 (2.94)

Using this result, (2.88) becomes

k(i+ko) + 8 i-j I 0

R.(i,.) = k + 3 + 2a 21'jl li-. I 1 (2.95)

4 + 221i I li-j 1>1

and (2.89) becomes

P4,(i) = 4 + 2a (2.96)

Since a1 (f) is gaussiank5 = 3.

There are two major points to be made about (2.95) and (2.96). First, the

assumed first order Markov variation of al(t) results in an exponential window-

ing form of the c (i) when k. is small. This result is found by solving

C = RL-'P (2.97)

LLsng (2.95) and (2.96). The c (i) turn out to ba. 'xponential with decay factor a 2 .

The c (i) to not exactly follow decay for values of i near 0 or 1, but these effects
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are due to the finite length window and are negligible. The point is that

exponential windowing of data is optimal when the time varying parameters are

first order Markov. The second point is to interpret the meaning of the kurtosis

of u, and observe the effect k, was on the optimal window. Since u(t) is zero

mean, ku (see Eq. 2.96) can be viewed as a measure of the variance of the power

of u(t). A large k, means that the power of u(t) undergoes large changes in

comaparison to its average power. A small value of k, means the u(t) process

u(t) was small deviations about its average power. Note the effect this has on

the window, large ku values force Rx close to a tridiagonal form which means

the c (i) coefficients decrease slowly. This is intuitively understandable, since

more data will be required to form a meaningful average of u(t). Small/k does

just the opposite making the c (i) coefficients decrease exponentially.

- '=."4" . . . .. ..
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2.8 AN OPTIMAL WINDOW FOR A NON-SIMPLE NON-STAT1ONARY JAMMER

This section presents an optimal window for a jammer using a multiple zero

filter to generate its wavefront (see Fig. 2.16). The angle of arrival (so) is held

constant, and the frequency components of the jammer are varied. The wave-

front of the jammer is generated

W(t') = a.(t)u(t) + ... +a,(t')u(t'-k) (2.98)

where u (t') is a gaussian, white noise sequence. The signal at the auxiliary ele-

ment is,

x(t) = a.,(t'-m)u(t'-m) + ... a (t'-m)u(t'-k-m) (2.99)

and redefining the time index as in Section 2.7 so that t = t' - m gives

z(t) = (t)u(t) + + at(t)u (t-k)

- an(t)u(t-n) . (2.100)

The coefficients ag(t) are time invariant stochastic processes which represent

the time varying nature of the jammer. As described before (section 2.5), this

filter is a moving average (all zero) type, which means that for a fixed set of t
N.(t), z(t) has a frequency spectrum with n dips in it. The specific character of

the dips is a function of the ut(t), hence if the a,(t) are allowed to change, the

spectral character of the jammer becomes the varying.

An optimal window for the data of the above described jammer can be found

by following a similar collection of steps to those of section 2.7. First, form the

RxL and P., quantities, then solve for the optimal window. The R,. matrix and

P, vector will be determined in a component-wise fashion to make the deriva-

tion more clear. Once these component expressions are determined, they will

be combined to form R., and P,,,.

The R& matrix will now be found. Let the components of RL be denoted

'1 ,- _ ." : .-. , '_': ".. . .. .•. .
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Time Varying W(t)
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Figure 2.16. Multiple zero jamer waefront generation.
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Figure 2.17. Model of nt h order Markov process generatln a(t). -
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Ra(ij). where i is the row index and j is the column index which locate the

component in R,. Both i and j range from t -l to t and R, is an I by I matrix

=.id £z(i)z(i))

= EIE(x (i)x(j) Iam(i)a. (j))) (2.101)

The last equality of (2.101) indicates how R.. will be found. R is formed by

first taking an expectation over x given the random a .. (i) coefficients. Then an

expectation with respect to the am(i) coefficients is taken giving R,,. The

assumption that u(t) is a gaussian sequence in (2.98) implies that x(t) is also

gaussian since it is a linear combination of past u(t) values. This gives the

simplification,

E[z'(i)z'(i) la,,(i .()] = E[x2 (i)la.,i))E(x2(j)Ia2 (j)] +
(102)

Now,

z(i) = a.(Oua(i-m) (2.103)

and

X24) = au.(i)u(i-rn)a.,(i)u(i-n) (2.104)
xt-0 nu

which results in

E[x'(i)ja.(i)] = .,(i)an(i)Ek(i-m)u(i-n)) . (2.105)
n=0 n-0

Note that E[u(i-in)u(i--n)I is nonzero only when i-rm i-n. So (2.105)

simplifies to

E[XI(i)la(i)] = a A(i)u • (2.106)
__ _----0

...
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Evaluating the second term in (2.102) gives,

Afx~~z()Iami)~LJ))= ~ a,,(i)a.()Ek(i-m)u(-n)) (2.107)

where F*(i-m)u(j-n)) is nonzero only when i-*n j--. This lets (2.107)

simplify to

E[z(i)(j)I.(i)a(j)] = a.(i)a.,+(j)U "T (2.108)

where L = i-j and 1!9k. For i > k. ix()Ia. i . j)=0

Now evaluate R,, (i .) by taking expectations of (2.106), and (2.108). This

will be done in two parts. R. is I by I so l= i -j ranges from 0 to I . The

length, k, of the all zero jammer wavefront generation process is not related to

the length of the window, I. Hence k can be greater or smaller than I. The fol-

lowing development covers values of R(i,j) for any k,. The two cases to con-

sider are l'!r k and i > k. First, for l' -k,

Denoting expectation by over-bars as in&Eq. (2.50) of gives

E[z(I)z(j)] = t 4 ( Ia ( +

31= w=U

Now, for ' > k,
E[Z(i)ZUi)] =O a,( i)a,.(j) (2+1

wiZO n =

vn=O z =O

To achieve a further sirnplitlcation, assume thAt the sequences an(i) and a',(j)

are uncorrelated for min and that they are zero mean, which makes

4.
__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. , , .. , -p- - - -

Le
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a(i)an(j) = 0 for msn . (2.112)

Substituting this into (110) and (111) gives,

El) =,(i)a,(j) + 2 o0()a,,(j) 0
I=O n=O m=00

Elz(i)zUj)] u f ,Q(i)a,-n(j) + 2'f' 4(iaA+,I~I j IL

Ur- k !5 11'1 (2.113)
a n=O

Next assume that the a.m(i) are all identically distributed random variables.

which gives the final simplification. For i-j = 0,

E [ z ()zj) [3 ai t )+a~t 3 ~ (a-))

- i 3(k+1)(a +k(-) 2 1 
. (2.114)

For 1!1i-j I = I ' ! k

0mO iiO mat

= O (k +1) az(I )a(j) + k(k +1)a-2+ 2(k - CI+1)M-P] (2.il5)

and for k < I'!

E(z (')z Wj) U (a-(icz(j - n) uj m= )

-0 l(k.4l)aF(i-)af(j) - (k~le-) + (k+1)2(a-)2) .(2.116)

Since (i) is a stationary sequence, let

i

It

L L
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() ,,(i)cz ) , L' )-- (2.117)

Combining 2.114, 2.115. 2.116 and 2.117 gives,

3(k+1)( -i+k - ) k =0

(u)' E[2(i) ()1 (k+1)rpbC + (k2+3k -2(1')+2)(ai)21 ! Ci k (2.118)

(k+1)(bb 1') + (k2+k)a -  k <V

Next the elements of P,. denoted as P (.), will be found. The index i

ranges from t -1 to t and indicates where the component belongs in the P, vec-

tor. First,

P.,(i) = E(z 2 (i)Pt)

= E[E(x2 (i)P, Iam(i))] (2.119)

where

Pg = E[mz(t)Iam(i)]
t a (t )u. (2.120)

=0

The last equality is the result of Eq. (2.106). To evaluate (2.119), an expression

for the conditional expectation term must be found. Using Eq. (2.120) gives

m=0 n =1D

since the u(t) sequence is white. Now taking expectation with respect to a6,(i)

yields the total expectation,

E[z2(-i)Pg] = u-22z~i~,(t (2.122)
m=0 n=0

Now, as before, assume that the a,, (i) are uncorrelated, zero mean random vari-

ables, which results in the condition shown in equation 2.112. Also assume that

the a,.(i) are identically distributed for all m. This leads to a simplification of

(2.122) to

-2((1 + 1)c + k(k + 1)- ) i = k
E[xz(i)P] --' ((k + 1),.(t-i) + k(k+l)a- ) i <k (2.123)

iu

IT
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Equations (2.118) and (2.123) represent component descriptions of R", and

PI,, in terms of the values of a7 , - T and Vtb (i). These quantities are all deter-

mined by the dynamics of the a.(t) coefficients. Since it was assumed that the

a (t) are independent, and identically distributed, only one model is required to

find the unknown statistics of the a1(t). The random variable a(t) is used to

represent the statistics of all the a(t). A good model of how these coefficients

change is to assume the a(t) is an n-th order Markov process, that is,

"(t) = 71 t(t-1) + " y, a (t-n) + q(t) , (2.124)

where q (t) is a gaussian white noise with zero mean. Figure 2.17 shows the z-

transform representation of how a(t) is generated. The actual aL(t) sequences

used for simulation are generated as shown in Fig. 2.17. but to make them

independent, k independent q (t) sequences are presented to k separate ,but

identical, filters (see Fig. 2. 18). Since the gain k is variable, the qj (t) sequences

can be restricted to being unit variance wit4 no loss of flexibility. Since q (t) is

gaussian. a(t) is gaussian since the filter acts as a linear operator. To find

jb a,(i-j), the fact that a (t) is gaussian gives

Dbb(i-j) = E(a'(i)e 2(j))

= E(" 2 (i))E(C2(j)) + 2(E(a(i)a(j)))2

(a +. (2.125)

The a(t) sequence is stationary and therefore j,(i.-j) represents the auto

covariance matrix of a (t). Values of 0 (i -j) may be found by the spectral fac-

torization theorem 114) as

g,(k) = Inverse Z Transform (1-z-Y(z))( -z( 2 -AW (2.126)

The point is that Vp.(k) is readily obtainable, given the y(z) polynomial.

Since a(t) is gaussian. it is known that 3a = 3 - e. These results may be sub-

stituted into equations 2.118 and 2.123 to get,
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k
qolt) - k - a0(t)

S+ y 1 z l + ... + ynz n

ql Mt (t
0I + yl z ' l + ... + yn

n

qk(t) 1k + • ak (t)

n

0

k

q(t) + yl z I + , + y z ak(t)

Figure 2.18. Expanded view of 'linear filters' box of Fig. 2.18.
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j3(k+a)(3+) -- 2 0-
-2- E(x)(iW(j)) 12(k+1)92(') + (k +4k -211' + 1)a-21 I1'9k (Z. 127)

L2(k+1)92(1) + (k2+2k+1)- O k <C

and

-(' 1)(3+k) -  (2.12t

u E(W (i)PI) = +(k 1) 2(t-i) + (k +1)2-  < (

Using the above equations, an optimal window was found for the process

a,(t) = 1.98ai(t-1) + .9801 ai(t-2) + qd(t) (2.129)

which is shown in Fig. 2.19. The same setup as described in section 2.3 is used

for a performance comparison between an algorithm using an optimal window

and an algorithm using an exponential window. Figure 2.20 displays the result.

The antenna array employing an optimal windowing strategy tracks the changes

in the true parameter more closely. The value of the decay constant, a, for the

exponential window was determined so that both algorithms had the same

weight variance. Further, Fig. 2.21 shows another comparison where the

exponential windowing algorithm was allowed to have a higher weight variance

than in Fig. 2.20. Note that even in this case, the tracking properties of the

optimal windowing algorithm are superior,

A

L ..,_
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Z9 CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY

The weighted recursive least squares algorithm has been derived in the con-

text of realizing a Zahm adaptive beamformer. This algorithm has been shown

to be a practical implementation of the ideal LMS/Newton algorithm. The ability

of the algorithm to track a time-varying jammer was shown to be highly depen-

dent on the exponential decay rate of the weighting coefficients. Minimization of

mean squared error averaged over the nonstationarity was found to involve a

tradeoff between weight variance and weight tracking speed. The restriction of

considering only exponential weighting of the outputs was then removed and a

method for finding a more complex, higher order optimal weighting was given in

sections 2.5 and 2.6. Section 2.7 demonstrated that the use of an exponential

weighting is optimal when the parameters of the jammer are changing as a first

order Markov process. Secion 2.8 demonstrated that the use of an optimal

weighting on the error outputs results in an improvement of the tradeoff

between parameter variance and parameter tracking. Combining these results,

if the jammer is believed to have a simple time varying nature, exponential

weighting may be employed by a recursive algorithm with near optimal result. If

the jammer is thought to have a complicated time varying structure, it would be

worthwhile to find an optimal data YWeighting and use this for implementing the

adaptive algorithm. Considerable improvements in performance could result.

Further study will involve defining a more general estimation error cri-

terion than the zeroth-order lags proposed. here. Also, this performance cri-

terion should include some contribution from errors in estimation of the cross

correlation vector P (of section 2.4). Work should also be done in developing a

recursive algorithm such as the iterative inverse using the higher order weight-

ing techniques. Finally these results should be extended to an n-element Zahm

array and other types of adaptive arrays.

t .
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.1 Introduction

Another way to improve the effectiveness and lower the cost of an adaptive

beamformer would involve the use of a new underlying beamformer structure.

In most broadband beamforrners the basic structure is that of a multi-channel

FIR (zeros only) digital filter. In this section we describe a beamformer that is

based on both fIR and FIR (both poles and zeros) filtering. It will be shown that

an fIR beamformer gives improved nulling performance over the conventional

FIR beamformer. As the hardware becomes available, beamformers based on HiR

filtering may prove to be extremely valuable to the bearnforming community.

3.2 Broadband Bearaforming

A narrowband beamformer uses a complex gain at each element to perform

the antenna weighting. A complex gain is realized by using a 90 degree phase

shifter to split the signal path into seperate in-phase and quadrature phase

channels. Each channel is then ted through selectable attenuators correspond-

ing to the real and imaginary part of the complex gain. Finally, the two channels

are recombined by summation.. A beamformer using complex weighting can null

interference which is of narrowband nature only and is therefore useful only in

systems where the desired signal is narrowband.

In a broadband communication system such as spread-spectrum, it is

necessary to use antennas operating over a much broader bandwidth. Broad-

band adaptive antennas were first proposed in [2]. These systems differ from

the narrowband beamformer by replacing the complex weights with tap delay

line filters. A tap delay line filter is commonly refered to as a finite impulse

response or FIR filter. A bearnformer using FIR filters rather than complex

weights is able to use temporal as well as spatial information to eliminate

unwanted signals and to pass the signal of interest.



68

Another class of digital filters are those possessing an infinite impulse

response and are appropriately called hIR filters. An IIR filter in many cases will

require far fewer weights than an FIR filter to achieve an equally effective fre-

quency response. In figure 3.1, the frequency response of an FIR and an IIR digi-

K tal filter are contrasted where the desired chacteristic is to pass all frequencies

except those in a narrow region. For equal number of weights, notice the

improved performance of the iR filter over the FIR filter. 'With these results in

mind, we set out to investigate the application of HiR filters to adaptive beam-

forming. When adapting the weights of an IIR filter to achieve a desired effect,

one encounters many problems. In the signal processing field, there have been

many attempts over the past ten years or so to try to develop a reliable algo-

rithm for adaptive fIR filtering [15,16]. Recently, we have developed a novel

technique for implementing an hiR adaptive filter and are investigating it in

applications to digital filter design, adaptive contol, adaptive noise canceling,

adaptive line enhancement and to adaptive beamforming.

In the next section, we will briefly describe the Zahm beamformer and show

its similarity to a general purpose adaptive filter. We will then describe our new

technique of IIR adaptive filtering and give simulation results demonstrating the

performance of an HIR Zahrn beamf ormer.

33 Ikoadband Zahm Beam!ormer

A two element Zahm beamformer is shown in figure 3.2. The signal to be

received is assumed to be of low power compared to interference (jamming) sig-

nals. The beamformer acts like a signal power inverter causing high powered

jamming signals to be attenuated relative to the low power desired signal. It

operates by minimizing the antenna output power subject to a "soft constraint".

The primary antenna element is coupled directly, and it maintains the soft

omni-directionality constraint and keeps the beamformer output power from 4,

L9
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being driven to zero. Attached to the auxilary elements are FIR adaptive filters.

These filters allow the flexibility of frequency filtering as well as spatial filtering

to remove unwanted jamming signals. Figure 3b shows a general purpose adap-

Live filter. The two-element Zahm beamformer is simply an adaptive filter whose

F desired response and primary input are connected to the primary antenna ele-

ment and the auxilliary antenna element respectively.

3.4 UR Adaptive ltering

Keeping in mind the simple connection between adaptive beamforming and

adaptive filtering, we now discuss a general purpose adaptive fIR filter. The

usual form of FIR adaptive filter uses LMS algorithm to adjust its weights to

minimize the mean square error between the desired response and the filter

output. The FIR LMS adaptive filter has been used in a wide range of applications

with favorable results. There has been much research concerning the develop-

ment of a general purpose adaptive fIR filter possessing the same robust charac-

teristic as the FIR LMS algorithm.

In this section we will describe our technique for implementing an UIR adap-

tive filter. Figure 3.3 shows the basic structure of an fIR adaptive filter. We use

z-transform notation to indicate a linear filter, the converged adaptive filter.

The polynomial B(z) corresponds to the zeros or FIR part of the digital filter and

the polynomial 1 corresponds to the poles or fiR part of the fiter.
1 + z-A(z)

The fixed term 1 in the denominator polynomial alleviates the problem of divid-

ing by zero and does not influence the generality of the total structure. The

adaptive part of this filter adjusts the coefficients of the A(z) and B(z) polyno-

mial in such a manner that the mean squared output error is minimized. This is

standardly refered to as an " output error " method since it is directly minimiz-

ing the difference between the desired response d and the filter output y.

L_
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The output error method of adaptive IR filtering has many problems. The

mean square error is a non-quadratic function of the feedback weights. This

causes major difficulties that lie in maintaining algorithm stability, providing

relatively rapid convergence rates and guaranteeing optimality of the converged

filter (i.e. convergence to the global rather than to a local optimum). In the FIR

case, these problems are for the most part, nonexistent.

For example, a fixed FIR filter is always stable. Since the filter output is a

linear sum of delayed versions of its input, a bounded input must result in a

bounded output. In a fixed IR filter this is not the case. Figure 3.4 shows a sin-

gle weight IR filter. The output yt is generated by adding a delayed version of

the output to the input xt.

Vt= t ay-1 + Z, (3.1)

If the coefficient a, is of magnitude greater than 1, the filter output will "blow

up". This is due to the output feedback inherent in fIR filtering making the filter

unstable. When adapting fIR filters, one must make sure the filter weights

remain in the stable region.

Another difficulty in IIR adaptive filtering is one of slow convergence. Most

adaptive IR filters require enormous" amounts of data and consequently long

waiting times until the filter converges. This is primarily due to the nature of

the so called error surface which contains many flat areas. Because most adap-

tive algorithms are based on the method of steepest descent, flat areas on the

error surface result in slow convergence. In the usual FIR filtering problem, this

is not the case. The error surface of an FIR adaptive filter is a quadratic func-

tion of its weights and has only one minimum and usually does not possess flat

spots.

The technique we have developed for adapting fIR filters involves minimizing

an error which is somewhat different from the output error. The different

., : .... ..
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choice of error alleviates many of the problems just discussed. Consider a refor-

mulation of the basic IIR adaptive filter shown in figure 3.3. In the path of the

error, place an FIR and an hIR filter in cascade having transfer functions

1+z-A(z) and 1 respectively. This is shown in figure 3.5a. These two
1+z 2 'A(z)

filters in cascade cancel and do not modify the overall structure. By pushing

the first filter through the summation node, the structure shown in figure 3.5a is

transformed into the identical structure shown in figure 3.5b. Now cancellation

of the two cascaded filters results in the structure shown in figure 3.5c.

Notice the difference between the error eg and the error e;; one is a filtered

version of the other. The error eg is called output error and the error e; is

called "equation error". This terminology comes from control systems theory.

It turns out that minimization of equation error is a much simpler task than

minimization of output error. This is because the mean square of the output

error is quadratic in the parameters of B(z), but non-quadratic function of the

parameters of A(z). On the other hand, the mean square of equation error is a

quadratic function of the parameters of both A(z) and B(z). But is it reasonable

to minimize equation error rather than the natural output error? If the A(z) and

B(z) polynomials have enough weights to make the equation error small, then it

is likely that the output error will also be small. In fact, if the equation error is

driven to zero, then the output error will also be zero. In this case, minimizing

equation error is equivalent to minimizing output error.

A filter based on minimizing equation error is shown in figure 3.6. The

dashed lines indicate that the weights are to be copied into the output filter

1z The interesting feature about this structure is that it can be

adapted using a simple FIR LMS algorithm. Consequently, it will have many of

the nice robust characteristics that the FIR LMS algorithm has. The error sur-

.............................
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face will be a quadratic function of the weights; there will be no flat spots to slow

convergence and no local minima to hinder global optimality.

One important detail has been neglected here. How can we be sure that the

* output filter will be stable? The roots of the adaptive filter which is
l+z 'A(z)

filtering the desired response could lie outside the stability region. As such, this
1

would mean that .+z_'A(z) would be unstable. To overcome this problem, we

have developed a minimum-phase constrained LMS algortihm. Minimum phase

in this case means that all the roots of 1+z-'A(z) lie within the unit circle

(which is the desired stability region for IA ) . If each update of the
1+z-'A(z)

1+z -'A(z) polynomial is done so that the updated polynomial is kept minimum

phase, then the output filter will remain stable.

The key to the new adaptive IIR filter is, in fact, the development of a

minimum phase constrained IMS algorithm. This algorithm can be described as

follows.

The minimum phase constrained LMS algorithm is a method of adapting

polynomial coefficients to minimize the nmean square error subject to the con-

straint that all roots of the polynomial lie either within the unit circle or within

any circle of prescribed radius. As previously mentioned, the objective of this

algorithm is to generate an invertible polynomial to be used in an adaptive lIR

filter structure.

An update of the constrained polynomial is accomplished in two steps. The

first step performs a conventional LMS update. The second step alters the

updated polynomial in such a way that the resulting polynomial is minimum

phase.

..
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Step 1. Conventional LMS update:

Aj+ 1  Aj - wjXj (3.2)

where Aj is a vector containing the coefficients of the A(z) polynomial and ej ,Xi

are defined as in figure 3.6.

Step 2. Minimum phase projection:

First check the l+z-'A(z) polynomial for minimum phase. If already minimum

phase, this step is terminated. If A(z) is not minimum phase, then all roots of

A(z) are shrunk radially towards the origin by a "shrinkage factor", p

Aj,+(2) - Aj+,(p'-z) (3.3)

If p is chosen to be a positive number less than 1, then all of the roots of the

A4j+(z) polynomial will be drawn radially inward. The shrinkage ratio, p, is

reduced slowly in a series of small steps until A(z) passes the minimum phase

test. This completes the adaptation cycle. When the next data vector is avail-

able, a new adapt cycle commences in the Step 1 mode.

Because the minimum phase test may need to be applied several times per

adapt cycle, it is imperative that the test be done in a way that requires very lit-

tle computation. An efficient test for minimum phase is one based on the

lattice-form realization of FIR filters due to Itakura and Saito [17]. The polyno-

rn*ial l+z-'A(z) corresponds directly to a FIR transversal filter. An equivalent

FIR lattice-form filter can be constructed from knowledge of the transversal

filter weights. Both FIR filters will have the same impulse response. The polyno-

mial 1+z-'A(z) is minimum phase if and only if all of the weights (also known as

reflection coefficients) of the equivalent lattice have magnitude less than one.

The beauty of this test lies in the ease with which the transversal filter is

transformed into an equivalent lattice filter. An algorithm for converting poly-

roxmial coefficients into the lattice filter reflection coefficients is described

________________________
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below. This algorithm [ends itself readily to computer implementation. requir-

ing memory space and computations proportional to the square of the filter

order. A few years ago, we would not consider such an approach. Today, pro-

cedures of this type are with the realm of practicality.

The transversal filter polynomial to be tested can be represented by

1+z'A(z) = +.. + a, (3.4)

Define an nzm matrix Q and let Q(ij) indicate the ith row and the jth column of

this matrix. Initialize the bottom row of the Q matrix to the filter polynomial

coefficients

Far ' 1, 2. ..... m

Now implement the following recursion

For i =mr.mr-l, ... , 1

For j = 1, 2, '. /-

.Let Q(i-lIj) Q (Q') -Q( i,);z Q('i,i-j) (3.6)

Let k, be the ith reflection coefficient. These coefficients can now be read off

the ith diagonal of the Q matrix

For =1. 2 ..... m
Let kt4-Q(i,i) .(3.7)

The filter is minimum phase if and only it all of the reflection coefficients are of

magnitude less than one.

l+z-'A(z) ninimumphase ,.- < I for i = 1.2, ..... m (3.8)

This concludes the procedure for testing a polynomial for minimum phase and

completes the overall description of the minimum phase constrained LMS algo-

rithmn.

rT
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The minimum phase LMS algorithm is currently being studied with the goal

of developing convergence and optimality proofs. Although the algorithm is

unproven mathematically, it has been tested extensively by computer simula-

tion and has never failed to converge and find an optimal solution. It is a very

important new development which will have applications in adaptive control,

digital filter design, adaptive noise canceling, and adaptive antennas.

3.5 UIR Zahm Beamformer, a description

In this section. we show how to use the hIR adaptive filter to realize an hIR

Zahm beamformer. Figure 3.7 shows a 3-element hIR Zahm beamformer

configured to minimize output error. As we previously discussed, minimization

of this output error is a difficult task. Instead we choose to reconfigure the sys-

tem by a series of evolutionary steps shown in figure 3.Sa-e, to minimize equa-

tion error

First, we seperate the filters into all-zeroand all-pole sections as shown in

figure 3.8b. Next we establish a common denominator by inserting a filter
1

( +z-AI(z))(1+z-A2 (z)) directly after the summer, and compensate by plac-

ing the inverse of this filter at the input to the summer. The introduction of

these two filters has not changed the overall system, since they cancel each

other's effects. Note that if the filter 1+z-'A4(z) is adapted in one place, all

other copies A,(z) must receive the same update, which is indicated by the

dashed lines. The new configuration of figure 3.8d behaves the same as that of

figure 3.8a, since we have simply rearranged the system of figure 3.Ba. A further

simplification is to treat the cascaded filters B(z)(1+z-A(z)) and

B(z)(1+z-'A,(z)) as single filters denoted by Bi and B2 respectively. The sys-

tem of figure 3.8d will be adapted using the equation error e' rather than than

the true output error e. This eliminates the IIR part of the beamformer from

______________ ~ :~aii',
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the adaptation loop, so a simple algorithm for updating FIR filters, such as LMS,

can be used. For simplicity we define the product of the two FIR filters as one

single filter.

(1+z-'A,(z))(1*z-'A2 (Z)) =1+z'A(z). (3.9)

The above result is easily generalized to a larger array with a greater number of

auxilliary antenna elements and is shown in figure 3.9.

The weights, which are copied into the output filter 1+z-A(z) must not

cause this filter to become unstable. To ins.u'e stability, we update the A(z)

polynomial using the minimum phase LMS algorithm discussed in the previous

section. The other polynomials are adapted with the conventional LMS algo-

rithm.

In the next section, we will show simulation results using the IIR Zahm

bearnformer of figure 3.7. The Bj(z) filters are adapted by LMS and the A(z) is

adapted using minimum phase LMS.

3.6 IIR Zahm Beamformer, sinulation results

In the following experiment, we compare the performance of a conventional

Zahm beanformer to an HIR Zahm beamformer. To make a valid comparison,

the number of degrees of freedom in both beamformers must be equal.

Specifically, we will use a 4-element broadband Zahm beamformer with linear

element placement and 4 taps per element. This corresponds to 12 degrees of

freedom. The IR Zahm beamformer will have 3 elements with the same linear

placement and four taps per element corresponding to 11 degrees of freedom.

The missing degree of freedom arises because of the fixed I in the 1+z-A(z)

polynomial. Incident upon this array is a broadband jammer having a bandwidth

equal to 10% of its center frequency. The desired signal is assumed to be of low

power and, consequently has little effect on the converged beam pattern. The

1- -- . . .. ..-__ __~, 4'~
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ideal behavior of this form of adaptive antenna would be to completely eliminate

the jamming signal from the system output by forming a broadband null in the

direction of the jammer. Unfortunately, perfect broadband nulls could only be

obtained by implementing exact delays on all the antenna element circuits.

With such delays the signals can be recombined in such a manner that perfect

cancellation can occur. Physically, this would require an infinite range of adju-

stable delay. If two jammers were present, it would be theoretically impossible

to form two perfect broadband nulls. Good broadband nulls can be obtained in

practice using finely spaced delay line taps. As such, one can remove most of

the broadband jamming power. Figure 3.10 shows the frequency reponse of the

converged beamformer in the direction of the jammer for both the conventional

Zahm array and the HIR Zahm array. Notice the improved notching performance

of the 1hR beamformer. It is able to remove a great deal more of the jammer

power than the converitional beamformer. Although additional simiations need

to be run, we feel that this simple example demonstrates the possible improve-

ments which could be achieved using IIhR beamforming.

&7 Further Work

What we have seen thus far is probably just the "tip of an iceberg". Work is

now proceeding to extend these results to an IIR version of a Frost beamformer.

The Frost beamformer does not require the assurntion of a low-power desired
j

signal, but does assume knowledge of the signal look-direction. Additional simu-

lations and mathematical analysis must be done to verify the expected perfor-

mance improvements under a wider range of signal. noise, and jammer condi-

tions. Analytical expressions for optimal beam patterns are being derived.

I7
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Figure 3.10. Comparison of frequency response in the direction of a broadband
Janmmer for (a) conventional Zahm beamforiner and (b) HIR Zahm
beamformer. Notice the notch improvement obtained using the
IIR beaniformer.
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APPENDIX A

The matrix inversion lemma is given by

(A+BCD)- 1 = A-' -A-'B[C 1 I+DA-'BJ1 DA-1  (Al)

choosing

2 A =a-ri(t) = [L~)'(A.2)

B = Dr = X(t + 1) (A.3)

C =1. (A.4)

gives

(caR(t) +X(t+i)X T*(+i))- - LP(t) - 1 P(t)X(t + )
a C

L w- P J(t + )P(t+ )P(ti)] (A.5)

a I( 1Ptxt+1



APPENDIX B

From the text, equation 2.20. the weight update is given as:

-F (t +1) =~ +i aN (t)d (i).X(i) + d (t +i1)X(t+i1)) . (B. 1)
i+1

Substituting Eq. (1a) gives

X~t1)=I P(t)x(t + )X T (t + 1)P(t))

a'' a + X T (t+1)P(t)X(t +1)

aaj (t )d(i)X(i ) + d (t + !)X(t +-1))

Ej£.(t) + -(p(t)d(t+1)X(t+1) - P(t)X(t+1).X(t+1)P(t)a
a a +- XT(t + 1)P(t)X(t + 1)

a~)X~ + XT(t + )P(t) t+1X(t + 1) )

aW(t) + 1/2 ) - ai-X (tti)PXt)Xjt++

a + .XT (t +1)p(t)X(t +1) 1(Ptdt+ )~ 1

c(t+i)P(t )X(t -- )X T (t +l)p(t ).(t +1) - p(t)X(t +1)XT (t +)~~~ iXti

- ap(t)X(t +1)X T(t +a)P(t) ± t(t)d(i)-X(i))

1/2+(a + X T (t+1)p(t)X(t+1)) :P(t).X(t+1)(ad(t+1) - Hr1!(t)X(t+1jB-2)

which gives the following recursive update for JR(t)

-W~ +1 K~) +a +.XT(t+1)p(t)X(t+1) P(t).X(t+1)(d(t +1)
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